Admissibility for multi-conclusion consequence relations and universal classes

Michał Stronkowski

Warsaw University of Technology

TACL, Prague, June 2017

plan

- single-conclusion consequence relations and quasivarieties
- multi-conclusion consequence relations and universal classes
- application in intuitionistic/modal logic

scrs

- φ, ψ formulas
- Γ, Δ finite sets of formulas
- Γ/φ (sinlge-conclusion) rule
- \vdash single-conclusion consequence relation (scr): a relation \vdash s.t.
 - $\triangleright \varphi \vdash \varphi$
 - ▶ if $\Gamma \vdash \varphi$, then $\Gamma, \Delta \vdash \varphi$
 - ▶ if $\Gamma \vdash \psi$ for all $\psi \in \Delta$ and $\Delta \vdash \varphi$, then $\Gamma \vdash \varphi$
 - if $\Gamma \vdash \varphi$, then $\sigma(\Gamma) \vdash \sigma(\varphi)$
- $\mathsf{Th}(\vdash) = \{ \varphi \in \mathit{Formulas} \mid \vdash \varphi \}$ theorems of \vdash

quasivarieties

quasi-identities look like

$$(\forall \bar{x}) \ s_1(\bar{x}) \approx t_1(\bar{x}) \wedge \cdots \wedge s_n(\bar{x}) \approx t_n(\bar{x}) \rightarrow \ s(\bar{x}) \approx t(\bar{x})$$

quasivarieties look like Mod(quasi-identities)

These are classes closed under subalgebras, products and ultraproducts

 $\mathsf{SPP}_\mathsf{U}(\mathcal{K})$ - a least quasivariety containing \mathcal{K}

correspondence

admissibility for scrs

 \vdash_r - a least scr containing the rule r and extending \vdash

$$r$$
 is admissible for \vdash if $\mathsf{Th}(\vdash) = \mathsf{Th}(\vdash_r)$

⊢ is <u>structurally complete</u> if every single-conclusion admissible rule is derivable

Theorem (folklore)

 Γ/φ is admissible for \vdash iff

$$(\forall \gamma \in \Gamma, \vdash \sigma(\gamma))$$
 yields $\vdash \sigma(\varphi)$

for every substitution σ

admissibility for quasivarieties

q - quasi-identity, $\mathcal Q$ - quasi-variety

q is admissible for $\mathcal Q$ if $\mathcal Q$ and $\mathcal Q\cap\operatorname{\mathsf{Mod}}(q)$ satisfy the same identities

 $\mathcal U$ is structurally complete is if every admissible for $\mathcal U$ quasi-identity holds in $\mathcal U$.

admissibility for quasivarieties

$$\mathcal Q$$
 - quasivariety, $\mathbf A$ - algebra, $\mathsf{Con}(\mathbf A)$ - congruences of $\mathbf A$ $\mathsf{Con}_{\mathcal Q}(\mathbf A) = \{ lpha \in \mathsf{Con}(\mathbf A \mid \mathbf A/lpha \in \mathcal Q \}$

Fact [Bergman]

 $\mathsf{Con}_{\mathcal{Q}}(\mathbf{A})$ has a least congruence $\rho_{\mathbf{A}}$.

T -algebra of terms over a denumerable set of variables

$$\mathbf{F} = \mathbf{T}/
ho_{\mathbf{T}}$$
 - free algebra for $\mathcal Q$

q is admissible for $\mathcal Q$ iff $\mathbf F\models q$.

 $\Gamma, \Gamma', \Delta, \Delta'$ - finite sets of formulas

 Γ/Δ - (multi-conclusion) rule

 \vdash - multi-conclusion consequence relation (<u>mcr</u>): a relation \vdash s.t.

- $\triangleright \varphi \vdash \varphi$;
- ▶ if $\Gamma \vdash \Delta$, then $\Gamma, \Gamma' \vdash \Delta, \Delta'$;
- ▶ if $\Gamma \vdash \Delta, \varphi$ and $\Gamma, \varphi \vdash \Delta$, then $\Gamma \vdash \Delta$;
- ▶ if $\Gamma \vdash \Delta$, then $\sigma(\Gamma) \vdash \sigma(\Delta)$.

 $\mathsf{Th}(\vdash) = \{\varphi \in \mathit{Formulas} \mid \vdash \varphi\} \text{ - theorems} \\ \mathsf{mTh}(\vdash) = \{\Delta \subseteq_\mathit{fin} \mathit{Formulas} \mid \vdash \Delta\} \text{ - multi-theorems}$

universal classes

basic universal sentences look like

$$(\forall \bar{x}) \ s_1(\bar{x}) pprox t_1(\bar{x}) \wedge \cdots \wedge s_n(\bar{x}) pprox t_n(\bar{x}) \rightarrow s_1'(\bar{x}) pprox t_1'(\bar{x}) \vee \cdots \vee s_n'(\bar{x}) pprox t_n'(\bar{x})$$

universal classes look like

Mod(basic universal sentences)

These are classes closed under subalgebras and elementary equivalence

 $\mathsf{SP}_\mathsf{U}(\mathcal{K})$ - a least universal class containing \mathcal{K}

correspondence

```
universal class 1/
           mcr ⊢
    logical connectives
                                               basic operations
         theorems
                                                valid identities
                                ~~~
      multi-theorems
                                             valid multi-identities
      derivable rules
                                        valid basic universal sentences
single-conclusion der. rules
                                             valid quasi-identities
          Th(⊢)
                                                 free algebra
         mTh(⊢)
                                                      ???
                                <~~>
```

admissibility for mcr

 $r = \Gamma/\delta$ - single conclusion rule \vdash_r - least mcr containing the rule r and extending \vdash

$$r$$
 is admissible for \vdash if $mTh(\vdash) = mTh(\vdash_r)$

$$r$$
 is weakly admissible for \vdash if $\mathsf{Th}(\vdash) = \mathsf{Th}(\vdash_r)$

r is narrowly admissible for \vdash if for every substitution σ

$$(\forall \gamma \in \Gamma \vdash \sigma(\gamma))$$
 yields $\vdash \sigma(\delta)$

Theorem (lemhoff)

 Γ/δ is admissible for \vdash iff for every substitution σ and every finite set of furmulas Σ

(
$$\forall \gamma \in \Gamma, \vdash \sigma(\gamma), \Sigma$$
) yields $\vdash \sigma(\delta), \Sigma$

structural completeness for mcrs

 \vdash is (strongly, widely) structurally complete if every (weakly, narrowly) admissible for \vdash ' single-conclusion rule belongs to \vdash '

admissibility for universal classes

$$q=(orall ar{x}) \ s_1(ar{x})pprox t_1(ar{x}) \wedge \cdots \wedge s_n(ar{x})pprox t_n(ar{x})
ightarrow s(ar{x})pprox t(ar{x})$$
 a q-identity, $\mathcal U$ - universal class

q is <u>admissible</u> for \mathcal{U} if \mathcal{U} and $\mathcal{U} \cap \mathsf{Mod}(q)$ satisfy the same muti-identities (positive basic universal sentences)

q is weakly admissible for $\mathcal U$ if $\mathcal U$ and $\mathcal U\cap \mathsf{Mod}(q)$ satisfy the same identities

q is <u>narrowly admissible</u> for ${\mathcal U}$ if for every substitution σ

$$(\ \forall i \leqslant n, \ \mathcal{U} \models \sigma(s_i) pprox \sigma(t_i)\) \ \ \ \ \ \ \ \ \ \ \mathcal{U} \models \sigma(s) pprox \sigma(t)$$

 $\mathcal U$ is (stongly, widely) structurally complete if every (weakly, narrowly) admissible for $\mathcal U$ quasi-identity is valid in $\mathcal U$

free families

$$\mathcal U$$
 - universal class, $\mathbf A$ - algebra, $\mathsf{Con}(\mathbf A)$ - congruences of $\mathbf A$ $\mathsf{Con}_{\mathcal U}(\mathbf A)=\{\alpha\in\mathsf{Con}(\mathbf A\mid\mathbf A/\alpha\in\mathcal U\}$

 $\mathsf{Con}^{\mathit{min}}_{\mathcal{U}}(\mathbf{A})$ - the set of minimal congruences in $\mathsf{Con}_{\mathcal{U}}(\mathbf{A})$

Key Fact

For every $\alpha \in \mathsf{Con}_{\mathcal{U}}(\mathbf{A})$ there exists $\gamma \in \mathsf{Con}_{\mathcal{U}}^{\mathit{min}}(\mathbf{A})$ s.t

$$\gamma \subseteq \alpha$$

Define

$$\mathcal{F}_{\mathcal{U}} = \{ \mathbf{T}/\gamma \mid \gamma \in \mathsf{Con}^{\mathit{min}}_{\mathcal{U}}(\mathbf{T}) \} \text{ - } \underline{\mathsf{free family}} \text{ for } \mathcal{U}$$
 (**T** - an algebra of terms)

characterization

- ${\cal U}$ universal class
- **F** free algebra (of denumerable rank) for $SP(\mathcal{U})$
- ${\mathcal F}$ free family for ${\mathcal U}$
- q quasi-identity

Theorem

- ightharpoonup q is admissible for \mathcal{U} iff $\mathcal{F} \models q$
- ▶ q is weakly admissible for \mathcal{U} iff $\mathbf{F} \in \mathsf{SP}(\mathcal{U} \cap \mathsf{Mod}(q))$
- ightharpoonup q is narrowly admissible for ${\cal U}$ iff ${f F}\models q$

Corollary

- lacksquare $\mathcal U$ is structurally complete iff $\mathsf{SP}(\mathcal U) = \mathsf{SPP}_\mathsf{U}(\mathcal F_\mathcal U)$
- ▶ \mathcal{U} is strongly structurally complete iff $\mathbf{F} \in \mathsf{SP}(\mathcal{U} \cap \mathcal{Q})$ yields $\mathcal{U} \subseteq \mathcal{Q}$ for every quasivariety \mathcal{Q}
- ▶ \mathcal{U} is widely structurally complete iff $SPP_{U}(\mathbf{F}) = SP(\mathcal{U})$.

dependence

wide stuructural completeness

₩ 1⁄1

strong structural completeness

structural completeness

an application

Blok-Esakia isomorphism

Theorem (Blok, Esakia, Jeřábek)

There is an isomorphism

 σ : mExt Int \rightarrow mExt Grz.

Int - intuitionistic logic as a mcr
mExt Int - lattice of its extensions

Grz - modal Grzegorczyk logic as a mcr mExt **Grz** - lattice of its extensions

closure algebras and Heyting algebras

closure algebras = modal algebras satisfying $\Box\Box p = \Box p \leqslant p$

M - closure algebras $O(\textbf{M}) = \{ \Box p \mid p \in M \} \text{ - Heyting algebras of open elements of } \textbf{M}$ Theorem (McKinsey, Tarski '46)

For a Heyting algebra \mathbf{H} the exists a closure algebra $B(\mathbf{H})$ s.t.

- ▶ if $\mathbf{H} \leqslant O(\mathbf{M})$, then $B(\mathbf{H}) \cong \langle H \rangle_{\mathbf{M}}$

 $\mathcal W$ - u. class of closure algebras, $\mathcal U$ - u. class of Heyting algebras $ho(\mathcal W)=\{\mathsf O(\mathbf M)\mid \mathbf M\in \mathcal W\}$ - universal class of Heyting algebras $\sigma(\mathcal U)=\mathsf{SP}_{\mathsf U}\{\mathsf B(\mathbf H)\mid \mathbf H\in \mathcal U\}$ - universal class of Grzegorczyk algebras

Blok-Esakia algebraically

There mappings

$$\rho \colon \mathsf{L}_\mathsf{U}(\mathcal{G}\mathit{rz}) \to \mathsf{L}_\mathsf{U}(\mathcal{H}\mathit{ey})$$
 $\sigma \colon \mathsf{L}_\mathsf{U}(\mathcal{H}\mathit{ey}) \to \mathsf{L}_\mathsf{U}(\mathcal{G}\mathit{rz})$

are mutually inverse lattice isomorphisms

 $\mathcal{H}\mathit{ey}$ - class of all Heyting algebras $L_U(\mathcal{H}\mathit{ey})$ - lattice of its universal subclasses

 $\mathcal{G}\mathit{rz}$ - class of all Grzegorczyk algebras $L_U(\mathcal{G}\mathit{rz})$ - lattice of its universal subclasses

preservation

Theorem

 $\mathcal U$ - universal class of Heyting algebras. Then $\mathcal U$ is (widely, strongly) structurally complete iff $\sigma(\mathcal U)$ is (widely, strongly) structurally complete

Corollary

 \vdash - mcr extending **Int**. Then \vdash is (widely, strongly) structurally complete iff $\sigma(\vdash)$ is (widely, strongly) structurally complete

The end

Thank you!